Acta Crystallographica Section B

Structural

Science

ISSN 0108-7681

Kohei Johmoto, ${ }^{\text {a* }}$ Takashi Ishida, ${ }^{\text {a }}$ Akiko Sekine, ${ }^{\text {a }}$ Hidehiro Uekusa ${ }^{a}$ and Yuji Ohashi ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Department of Chemistry and Material Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 153-8902, Japan, and
${ }^{\text {b }}$ Ibaraki Quantum Beam Research Center, Shirakata, Tokai, Ibaraki 319-1106, Japan

Correspondence e-mail:
johmoto@chem.titech.ac.jp
(C) 2012 International Union of Crystallography Printed in Singapore - all rights reserved

Relation between photochromic properties and molecular structures in salicylideneaniline crystals

The crystal structures of the salicylideneaniline derivatives N -salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicy-lidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

1. Introduction

Photochromic compounds undergo reversible colour changes upon photoirradiation as a consequence of an associated chemical transformation. This in turn leads to changes in the physicochemical properties of such compounds including absorption, fluorescence, refraction index and electric permittivity (Duerr \& Bouas-Laurent, 1990; Crano \& Guglielmetti, 1999). Photochromic compounds have attracted considerable attention because of their application in a variety of areas including photochromic lenses (Armistead \& Stookey, 1964), rewritable papers (Sousa \& Kashnow, 1969), photo-switching materials (Fukaminato et al., 2004), optical data storages (Kawata \& Kawata, 2000) and biological sensors (Mizuno et al., 2008).

Salicylideneaniline (SA) derivatives are well known as photochromic compounds, undergoing a colour change from yellow to red upon irradiation with UV light and the reverse colour change upon exposure to visible light or heat (thermal fading). These compounds can be readily synthesized according to a procedure first reported in 1909, involving the condensation reaction of salicylaldehydes and anilines (Senir \& Shepheard, 1909; Senir et al., 1912). Furthermore, SA derivatives have demonstrated a high resistance to fatigue and this is an important property for any prospective photochromic compound to have (Andes \& Manikowski, 1968). Following a systematic investigation into the relationship between the structural and physical properties of SA derivatives, it was proposed that crystals with a non-planar molecular

Received 10 January 2012
Accepted 13 March 2012
conformation would exhibit photochromic properties and that those with a planar molecular conformation would be nonphotochromic and exhibit thermochromic properties (Cohen \& Schmidt, 1962). Further consideration later led to the assertion that photochromic and thermochromic properties were mutually exclusive (Cohen, Hirshberg \& Schmidt, 1964; Cohen, Schmidt \& Flavian, 1964; Bregman et al., 1964; refcode CHILSAN). More recently, however, it was revealed that, as a consequence of tautomerization between the enol and cis-keto forms, the majority of SA derivatives have thermochromic properties, regardless of their photochromic properties (Ogawa et al., 1998; Fujiwara et al., 2004; Harada et al., 2007).

In light of the many controversies surrounding the understanding of photochromic properties (Duerr \& BouasLaurent, 1990), we clearly demonstrated that the metastable red-coloured species in photo-irradiated SA crystals takes the trans-keto form (Harada et al., 1999) by X-ray crystal structure analysis using two-photon excitation. Thus, from a mechanistic perspective, this provided an illustration that photochromism involves the transfer of a proton from the phenolic OH group of the enol form to the N atom of the imine group, generating the cis-keto form that is subsequently converted into the redcoloured trans-keto form, as shown in Scheme 1. Since the photochromic molecular transformation from enol to transketo forms occurs without destroying the single-crystal form, it was assumed that the transformation occurs via pedal motion in a manner similar to the thermal motion of azobenzene crystals (Harada et al., 1997; Harada \& Ogawa, 2009), which is known as a space-efficient motion in crystals.

Scheme 1
Furthermore, there is no consistency in the thermal fading reaction rates of SA derivatives from the red-coloured transketo form to the original pale-yellow enol form. In a recent publication, we clearly demonstrated using keto-form structures of polymorphic crystals that thermal fading reaction rates were dependent upon intermolecular hydrogen bonding between the NH group of the trans-keto form and hydrogenbond acceptors on neighbouring molecules (Johmoto et al., 2009). These results were in good agreement with the ab initio calculation (Mikami \& Nakamura, 2004).

Although it has long been accepted that molecular planarity plays an important role in photochromic reactions, there have been few reports investigating threshold values for the planarity (Haneda et al., 2007). Furthermore, several SA derivatives with dihedral angles of approximately 90° have recently been reported that did not exhibit photochromism (Fukuda et al., 2003). Given the range of conflicting experimental information and opinion, further investigation into the relationship between the planar conformations of SA derivatives and their photochromic properties is required. In this study we report the crystal structures of eight SA derivatives
to obtain a quantitative threshold value relating the nonplanarity of SA crystals to the occurrence of photochromic and non-photochromic behaviour. The SA crystals reported so far in the literature were also included in the study.

2. Experimental

2.1. Preparation of salicylideneaniline derivatives

Salicylaldehyde (1.0 mmol) and aniline (1.0 mmol) were dissolved in methanol $(50 \mathrm{ml})$ at 298 K . The resulting solution was stirred for 10 min and evaporated under reduced pressure until the crude condensation product was precipitated from solution and collected by filtration. Pure crystals were obtained by recrystallization from ethanol at 298 K . The salicylideneanilines (1)-(8) were obtained according to the same methodology by condensation of the corresponding salicylaldehydes and anilines, which have the substituents corresponding to the final products (Scheme 2).

Scheme 2

2.2. Identification of photochromism by UV-vis spectrum

The UV-vis spectra of the SA crystals were measured at 298 K with a JASCO V-560 spectrometer equipped with the option (ISV-469) for diffuse reflectance spectroscopy. Analytical samples were prepared by mixing the SA crystals (7 mg) with BaSO_{4} powder $(350 \mathrm{mg})$. Photoirradiation was carried out through a glass filter (HOYA UV360) at 298 K with a highpressure Hg lamp transmitting at a wavelength of 365 nm . Measurements were taken before and after photoirradiation.

2.3. Single-crystal X-ray diffraction analysis

Single-crystal X-ray diffraction data were collected at ambient temperature in ω-scan mode with R-AXIS RAPID and R-AXIS RAPID II imaging plate cameras (Rigaku) using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71075 \AA$) obtained from a rotating anode source and $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.54186 \AA$) from a rotating anode source with a confocal multilayer mirror. The data were collected at ambient temperature to correspond with the conditions of the photochromic reaction. The integrated and scaled data were empirically corrected for absorption effects with $A B S C O R$ (Higashi, 1995). The initial structures were solved by direct methods with SHELXS97 (Sheldrick, 2008) and refined on $F_{0}{ }^{2}$ with SHELXL97 (Sheldrick, 2008). With the exception of the disordered C atoms of the tert-butyl group, the non-H atoms were refined anisotropically, and all of the H atoms were obtained geometrically and included in the calculations using the riding atom model. The dihedral angles between the two benzene rings of SA molecules were calculated using SHELXL97 (Sheldrick, 2008). Although a crystal structure for

Table 1
Experimental details.
For all structures: $Z=4$. H -atom parameters were constrained.

	(1)	(2)	(3)	(4)
Crystal data				
Chemical formula	$\mathrm{C}_{17.12} \mathrm{H}_{19.35} \mathrm{NO}$	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNO}$	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}$
$M_{\text {r }}$	255.13	339.46	388.34	343.88
Crystal system, space group	Monoclinic, P21/c	Triclinic, $P 1$	Triclinic, P1	Triclinic, P1
Temperature (K)	296	293	296	296
a, b, c (A)	$\begin{aligned} & 14.3711 \text { (8), } 6.4227 \text { (4), } \\ & 17.9938 \text { (9) } \end{aligned}$	$\begin{aligned} & 10.814(2), 12.011(2), \\ & 15.727(3) \end{aligned}$	$\begin{aligned} & 10.7505(6), 11.5008(7), \\ & 16.3284(8) \end{aligned}$	$\begin{aligned} & 10.7392(12), 11.5369(15), \\ & 16.1292(19) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 116.819 (4), 90	89.25 (3), 81.21 (3), 89.97 (3)	$\begin{aligned} & 87.9590(10), 83.166(2), \\ & 89.536(2) \end{aligned}$	$\begin{aligned} & 88.032(3), 82.446(3), \\ & 89.642(3) \end{aligned}$
$V\left(\AA^{3}\right)$	1482.20 (14)	2018.7 (7)	2003.20 (19)	1979.8 (4)
$F(000)$	544	736	808	7364
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.135	1.117	1.288	1.154
Radiation type	Mo $K \alpha$	Mo K α	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.07	0.07	2.06	0.20
Crystal size (mm)	$0.34 \times 0.30 \times 0.18$	$0.34 \times 0.26 \times 0.06$	$0.18 \times 0.17 \times 0.04$	$0.15 \times 0.07 \times 0.03$
Data collection				
Diffractometer	Rigaku R-AXIS RAPID IP area detector	Bruker SMART CCD area detector	Rigaku R-AXIS RAPID IP area detector	Rigaku R-AXIS RAPID IP area detector
Absorption correction	Multi-scan, absorption was corrected by ABSCOR	Multi-scan, absorption was corrected by SADABS	Multi-scan, absorption was corrected by ABSCOR	Multi-scan, absorption was corrected by ABSCOR
$T_{\text {min }}, T_{\text {max }}$	0.885, 0.988	0.976, 0.996	0.189, 0.928	0.729, 0.994
No. of measured, independent and observed [$I>$ $2 \sigma(I)$] reflections	23 765, 3381, 2187	29 048, 10 049, 5423	19 830, 9015, 4719	$16014,7172,2946$
$R_{\text {int }}$	0.036	0.036	0.054	0.079
θ values (${ }^{\circ}$)	$\theta_{\text {max }}=27.5, \theta_{\text {min }}=3.0$	$\theta_{\text {max }}=28.4, \theta_{\text {min }}=1.3$	$\theta_{\text {max }}=27.4, \theta_{\text {min }}=3.0$	$\theta_{\text {max }}=25.3, \theta_{\text {min }}=3.0$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.649	0.668	0.648	0.602
Completeness to θ	99.5\% for 27.48°	99.5\% for 28.35°	98.9\% for 27.43°	99.1\% for 25.34°
Refinement				
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.057, 0.190, 1.13	0.044, 0.128, 0.92	0.043, 0.143, 1.08	0.064, 0.164, 1.02
No. of reflections	3381	10049	9015	7172
No. of parameters	194	482	445	461
No. of restraints	0	0	0	0
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.22, -0.21	0.24, -0.16	0.87, -0.78	0.20, -0.19
Extinction method	SHELXL	SHELXL	None	None
Extinction coefficient	0.023 (4)	0.0230 (19)	-	-
	(5)	(6)	(7)	(8)
Crystal data				
Chemical formula	$\mathrm{C}_{21.05} \mathrm{H}_{26.14} \mathrm{BrNO}$	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}$	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}$	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}$
$M_{\text {r }}$	388.34	309.44	353.45	231.67
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Orthorhombic, $\mathrm{Pna2}_{1}$	Monoclinic, $P 2_{1} / \mathrm{c}$	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	296	296	293	293
a, b, c (A)	$\begin{aligned} & 18.0699(14), 10.5997(10), \\ & 10.3838(9) \end{aligned}$	$\begin{aligned} & 12.4043(6), 8.9918(5), \\ & 16.6903(7) \end{aligned}$	$\begin{aligned} & 6.1482(4), 19.5491(13), \\ & 17.0976(13) \end{aligned}$	$\begin{aligned} & 4.6868 \text { (1), } 18.9497 \text { (4), } \\ & 12.8231 \text { (2) } \end{aligned}$
$\beta\left({ }^{\circ}{ }^{\text {\% }}\right.$	92.858 (2)	90	109.453 (3)	105.9680 (10)
$V\left(\mathrm{~A}^{3}\right)$	1986.4 (3)	1861.59 (16)	1937.7 (2)	1094.92 (4)
$F(000)$	808	672	760	480
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.299	1.104	1.212	1.405
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	2.08	0.07	0.08	2.88
Crystal size (mm)	$0.20 \times 0.14 \times 0.06$	$0.50 \times 0.35 \times 0.15$	$0.40 \times 0.30 \times 0.02$	$0.33 \times 0.10 \times 0.06$
Data collection				
Diffractometer	Rigaku R-AXIS RAPID IP area detector	Rigaku R-AXIS RAPID IP area detector	Rigaku R-AXIS RAPID IP area detector	Rigaku VM-SPIDER IP area detector
Absorption correction	Multi-scan, absorption was corrected by ABSCOR			
$T_{\text {min }}, T_{\text {max }}$	0.559, 0.884	0.798, 0.990	0.627, 0.998	0.340, 0.837
No. of measured, independent and observed $[I>$ $2 \sigma(I)$] reflections	18 792, 4500, 1915	17 422, 2193, 1955	17 354, 4410, 2938	12 241, 1976, 1565
$R_{\text {int }}$	0.109	0.032	0.087	0.046
θ values (${ }^{\circ}$)	$\theta_{\text {max }}=27.5, \theta_{\text {min }}=3.0$	$\theta_{\text {max }}=27.4, \theta_{\text {min }}=3.1$	$\theta_{\text {max }}=27.5, \theta_{\text {min }}=2.1$	$\theta_{\text {max }}=68.2, \theta_{\text {min }}=4.3$

Table 1 (continued)

	(5)	(6)	(7)	(8)
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.649	0.648	0.649	0.602
Completeness to θ	99.0% for 27.46°	99.8% for 27.42°	98.9% for 27.43°	
Refinement				
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.059,0.147,1.02$	$0.039,0.101,1.06$	$0.072,0.206,1.03$	4410
No. of reflections	4500	2193	272	1976
No. of parameters	241	214	0	145
No. of restraints	1	1	$0.056,0.170,1.08$	
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.30,-0.38$	$0.22,-0.14$	$0.33,-0.27$	

Computer programs used: PROCESS-AUTO (Rigaku, 1998), SMART (Siemens, 1996), SAINT (Siemens, 1994a), SADABS (Sheldrick, 1996), SHELXL97, SHELXS97 (Sheldrick, 2008), ORTEP3 (Farrugia, 2008), SHELXTL (Siemens, 1994b).
(6) had already been reported at 223 K (Ahmad et al., 2011), in the interest of consistency and direct comparison the structure was also analysed at ambient temperature. The crystallographic data and experimental details are summarized in Table 1.

3. Results

3.1. Crystal and molecular structures before photoirradiation

The molecular and crystal structures of (1) are shown in Figs. 1 and 2. The tert-butyl group of (1) is disordered and can exist in three different conformations. The conformation with

Molecular structure of N-salicylidene-4-tert-butylaniline (1). The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is drawn in a dotted line. The tert-butyl group with the highest occupancy is shown.

Figure 2
Crystal structure of N-salicylidene-4-tert-butylaniline (1) viewed along the b axis. H atoms are omitted for clarity.
the largest occupancy is depicted. There is a strong intramolecular hydrogen bond of $\mathrm{O} 1-\mathrm{H} \cdots \mathrm{N} 1$, occurring over a short $\mathrm{O} 1 \cdots \mathrm{~N} 1$ distance of 2.612 (2) \AA. This leads to the observed planar conformation in the $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$ moiety. The torsion angles of the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{C} 7-$ $\mathrm{N} 1-\mathrm{C} 8$ moieties are 5.7 (3) and -178.8 (2) ${ }^{\circ}$. However, the torsion angle of $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ is significantly large, $43.5(3)^{\circ}$, leading to the large observed dihedral angle of $49.12(7)^{\circ}$ between the two terminal benzene rings. No unusually short contacts were observed in the crystal structure and the loose contacts between the tert-butyl groups of neighbouring molecules led to the disordered structure of the group. The crystals of (2)-(4) were composed of two crystallographically independent molecules, A and B, in their unit cells. The molecular structures of $(2 A),(2 B),(3 A),(3 B),(4 A)$, $(4 B)$ and (5) were found to be similar to that of (1), with the corresponding dihedral angles between the two benzene rings observed to be 48.44 (6), 46.40 (6), 45.07 (12), 45.29 (12), 44.37 (15), 44.66 (14) and 27.25 (19) ${ }^{\circ}$. The molecular structure of (6) is shown in Fig. 3. The bond distances and angles, the intramolecular hydrogen-bond distance and the torsion angles of the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$ moieties were found to be similar to those observed in the crystal structures

Figure 3
Molecular structure of N-3,5-di-tert-butylsalicylideneaniline (6). The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is drawn as a dotted line.
of (1)-(5). Both the torsion angle of the $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ moiety and the dihedral angle between the two terminal benzene rings, however, were found to be smaller at 25.0 (3) and 21.56 (12) ${ }^{\circ}$.

The molecular and crystal structures of (8) are shown in Figs. 4 and 5. The bond distances and angles were found to be as anticipated. A strong intramolecular hydrogen bond of $\mathrm{O} 1-\mathrm{H} \cdots \mathrm{N} 1$ was observed over a short $\mathrm{O} 1 \cdots \mathrm{~N} 1$ distance of 2.621 (3) Å. Compound (8) was found to be whole planar. The torsion angles of the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1, \mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ moieties were $-3.3(5),-178.3$ (3) and $2.0(5)^{\circ}$, and the dihedral angle between the two benzene rings was found to be $2.82(20)^{\circ}$. These planar molecules are stacked as a sheet along the a and b axes and the sheets themselves are stacked alternately along the c axis. The crystals of (7) were also revealed to be whole planar in structure, in a similar manner to that observed in (8). It has been reported that (8) can exist in another polymorphic form, $\left(8^{\prime}\right)$ (Bregman et al.,

Figure 4
Molecular structure of N-salicylidene-2-chloroaniline (8). The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is drawn as a dotted line.

Figure 5
Crystal structure of N-salicylidene-2-chloroaniline (8) viewed along the c axis. H atoms are omitted for clarity.

1964; refcode CHILSAN). Whilst the reported crystal of (8^{\prime}) reveals that the bond distances, bond angles and torsion angles of the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$ moieties are similar to those observed in (8), the aniline moiety of $\left(8^{\prime}\right)$ is twisted out of the plane resulting in the larger dihedral angle between the two terminal benzene rings of 51.1°. It is known that the ortho position atom of the aniline ring has an influence on the planarity in SA derivative molecules such as N -salicylidene-2-aminopyridine (Moustakali-Mavridis et al., 1978, 1980), which is caused by the absence or presence of steric hindrance between azomethine H and the aniline ring. Similar hindrance would occur when the ortho-substituent is situated near the azomethine H. However, in this work the ortho-substituent of the aniline ring of (8) directs to the opposite direction to azomethine H . The only possible intramolecular interaction is between aniline and azomethine H atoms, which is expected for all ortho-, meta- and parasubstituted SA molecules. Thus, it has almost equal influence on the molecular conformation among all mono-substituted SAs. The different dihedral angles in polymorphic crystals of (8) and (8^{\prime}), as described above, clearly indicate that the molecular conformation is determined by the molecular packing and intermolecular interactions. The eight SA crystals with various dihedral angles in this study may be a good choice

(a)

(b)

Figure 6
Reflectance spectra (a) for (1) and (b) for (8). Dashed and full curves indicate before and after photoirradiation.

Table 2
Selected bond distances (\AA), angles, torsion angles and dihedral angles $\left(^{\circ}\right)$ of the SA derivatives (1)-(8) and (8^{\prime}).

	(1)	$(2 A) \dagger$	$(2 B) \dagger$	$(3 A) \dagger$	$(3 B) \dagger$	$(4 A) \dagger$	$(4 B) \dagger$
O1-C2	$1.350(3)$	$1.357(2)$	$1.358(2)$	$1.359(4)$	$1.350(4)$	$1.358(4)$	$1.360(4)$
C2-C1	$1.408(3)$	$1.410(2)$	$1.412(2)$	$1.413(4)$	$1.406(5)$	$1.415(5)$	$1.412(5)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.450(3)$	$1.450(2)$	$1.453(2)$	$1.452(5)$	$1.457(5)$	$1.449(5)$	$1.447(5)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.280(3)$	$1.284(2)$	$1.283(2)$	$1.278(5)$	$1.271(4)$	$1.281(4)$	$1.280(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.421(3)$	$1.420(2)$	$1.424(2)$	$1.420(4)$	$1.420(4)$	$1.429(4)$	$1.424(5)$
N1‥O1	$2.612(2)$	$2.582(2)$	$2.608(2)$	$2.580(4)$	$2.596(3)$	$2.599(4)$	$2.578(4)$
C1-C7-N1	$121.8(2)$	$122.5(1)$	$123.2(1)$	$122.1(3)$	$122.8(3)$	$122.8(3)$	$122.8(3)$
C7-N1-C8	$120.4(2)$	$121.1(1)$	$119.9(1)$	$121.0(3)$	$120.6(3)$	$119.8(3)$	$120.8(3)$
C2-C1-C7-N1	$5.7(3)$	$-1.8(2)$	$0.8(2)$	$0.3(5)$	$0.5(5)$	$-0.3(6)$	$1.5(5)$
C1-C7-N1-C8	$-178.8(2)$	$173.6(1)$	$-173.1(1)$	$-178.0(3)$	$-177.4(3)$	$178.5(3)$	$-179.5(3)$
C7-N1-C8-C9	$43.5(3)$	$-46.2(2)$	$45.4(2)$	$45.4(5)$	$46.1(5)$	$-46.5(5)$	$45.5(5)$
Dihedral angle (φ)	$49.12(7)$	$48.44(6)$	$46.40(6)$	$45.07(12)$	$45.29(12)$	$44.37(15)$	$44.66(14)$

	(5)	(6)	(7)	(8)	$\left(8^{\prime}\right)$	Average (1)-(8)
$\mathrm{O} 1-\mathrm{C} 2$	$1.361(5)$	$1.352(2)$	$1.344(2)$	$1.354(3)$	1.3709	$1.356(5)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.394(6)$	$1.409(3)$	$1.401(3)$	$1.402(4)$	1.3960	$1.407(6)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.464(6)$	$1.457(3)$	$1.444(3)$	$1.452(5)$	1.4563	$1.453(6)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.278(5)$	$1.279(3)$	$1.266(3)$	$1.276(4)$	1.2812	$1.278(5)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.432(5)$	$1.422(2)$	$1.421(3)$	$1.412(4)$	1.4272	$1.423(5)$
$\mathrm{N} 1 \cdots \mathrm{O} 1$	$2.621(5)$	$2.563(2)$	$2.610(2)$	$2.621(3)$	2.614	$2.599(5)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$123.5(4)$	$121.7(2)$	$123.5(2)$	$121.4(3)$	121.46	$122.5(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$119.6(4)$	$123.4(2)$	$121.0(2)$	$121.8(3)$	118.62	$120.7(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-0.4(7)$	$-2.5(3)$	$-2.2(4)$	$-3.3(5)$	-3.84	-
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$179.0(4)$	$-179.9(2)$	$-175.6(2)$	$-178.3(3)$	175.07	-
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$27.5(6)$	$25.0(3)$	$7.7(4)$	$2.0(5)$	-46.99	-
Dihedral angle (φ)	$27.25(19)$	$21.56(12)$	$8.74(12)$	$2.82(20)$	51.1	-

$\dagger(2 A),(2 B),(3 A),(3 B),(4 A)$ and $(4 B)$ are crystallographically independent molecules.
to discuss the relationship between the structures and photochromic characters, although the intramolecular hindrance may be an important factor to govern the relationship for the di-ortho-substituted SA crystals, which will be discussed in the following section.

3.2. Photochromic reactivity

The UV-vis absorption spectra for crystals of (1) and (8) are shown in Figs. $6(a)$ and (b). Following the photoirradiation of (1), a significant difference was observed in the spectrum between 400 and 600 nm . Spectral changes similar to those observed in (1) also occurred for crystals of (2)-(5) in the range $450-550 \mathrm{~nm}$. In contrast to these observations, photoirradiation of (8) did not result in any discernible difference and the spectrum remained unchanged. Crystals of (6) and (7) also behaved in the same way as (8). This indicated that the crystals of (1)-(5) were photochromic and that those of (6)(8) were non-photochromic. Interestingly, crystals of $\left(8^{\prime}\right)$, another polymorphic form of (8), were reported to be photochromic (Bregman et al., 1964; refcode CHILSAN).

4. Discussion

The selected bond distances, bond angles, intramolecular hydrogen-bond lengths, torsion angles of the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-$ $\mathrm{N} 1, \mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ moieties and the
dihedral angles of the two benzene rings of (1)-(8) are summarized in Table 2. Each parameter is averaged across the 11 molecules except for the torsion angle of the $\mathrm{C} 7-\mathrm{N} 1-$ $\mathrm{C} 8-\mathrm{C} 9$ moiety and the dihedral angle. The corresponding distances and angles are in good agreement with one another. The relation between the dihedral angles of the two terminal benzene rings and the photochromic properties is shown in Fig. 7. There are two polymorphic crystal forms, (8) and (8^{\prime}), which are non-photochromic and photochromic, respectively. Previously we reported that the compound $\quad N$-3,5-di-tert-butyl-salicylideneaniline-3-carboxyaniline (9) could exist in one of three polymorphic crystal forms, α, β and γ. The crystals of (9α) and (9β) exhibit photochromism and had dihedral angles of 60.95 (4) and $37.34(6)^{\circ}$, respectively, whereas crystals of (9γ) were non-photochromic and had a dihedral angle of $28.90(4)^{\circ}$. From Fig. 7 it is clear that the threshold value of the dihedral angle in relation to the occurrence of photochromic behaviour is 20 to 30°.

Recently it was reported that the twisted SA derivatives substituted with either methyl or tert-butyl groups at both ortho positions of the aniline ring were non-photochromic in spite of their large dihedral angles of 63.5 and 82.9°. In contrast, it was also reported in the same publication that SA derivatives substituted with either ethyl or isopropyl groups at the two ortho positions of the aniline ring exhibited photochromism and had dihedral angles of 82.3 and 73.6° (Fukuda et

Figure 7
The relationship between photochromic properties and dihedral angles of SA derivatives. Each SA derivative corresponds to an open circle that indicates the photochromic property and the intramolecular dihedral angle between two benzene rings. The dihedral angles of SA derivative crystals are classified into photochromic (upper row) and nonphotochromic (lower row) ones. Both types of photochromic and nonphotochromic crystals are observed between 20 and 30°.
al., 2003). Based upon these observations, the authors claimed that crystal packing was responsible for the observed photochromic behaviour rather than the non-planarity of the molecules.

As discussed in the previous paper (Johmoto et al., 2009), photochromism occurs as a consequence of a structural change between enol and trans-keto forms (Cohen \& Schmidt, 1962; Cohen et al., 1964; Harada et al., 1999), which is schematically depicted in Fig. 8. During the transformation from the enol to the trans-keto form, the H atom bonded to the OH group is transferred to the N atom and the cis-keto form is produced. The central single $-(\mathrm{H}) \mathrm{N}-\mathrm{C}(\mathrm{H})-$ bond of the cis-keto form rotates by 180° around an axis connecting the two benzene rings. The benzene rings slide up and down maintaining the conformation. Given that this pedal-like motion does not lead to large movements in the peripheral atoms of the molecule, the crystal structure is sustained in the photochromic reaction. However, if both of the ortho positions of the aniline rings are substituted with tert-butyl groups, it is impossible for the conformation to change from the cisketo to the trans-keto form due to steric repulsion between the
enol

trans-keto

Figure 8
A schematic drawing of the pedal motion. Two benzene rings only move as pedals of a bicycle as the central $\mathrm{NH}-\mathrm{CH}$ plane turns upside down in the transformation from enol to the trans-keto form.
tert-butyl groups and the H atoms of the methine and imino groups, as depicted in Fig. 9(a) in which the distances between the N atom and four methyl C atoms of the tert-butyl group close to the N atom were 2.870 (6) \AA for $\mathrm{N} 1 \cdots \mathrm{C} 28$, $3.000(7) \AA$ for $\mathrm{N} 1 \cdots \mathrm{C} 12,3.224$ (8) \AA for $\mathrm{N} 1 \cdots \mathrm{C} 11$ and 3.509 (7) \AA for $\mathrm{N} 1 \cdots \mathrm{C} 27$, respectively. In contrast, for SA derivatives substituted at both ortho positions of the aniline ring with isopropyl and ethyl groups, the pedal motion can still occur without intramolecular steric hindrance, as shown in Fig. $9(b)$, in which the distances between the N atom and four methyl C atoms of the iso-propyl group were 3.715 (7) \AA for $\mathrm{N} 2 \cdots \mathrm{C} 38,3.838$ (6) \AA for $\mathrm{N} 2 \cdots \mathrm{C} 31,4.043$ (5) \AA for $\mathrm{N} 2 \cdots \mathrm{C} 30$

(c)

Figure 9
Schematic drawings of intramolecular steric hindrances for the SA molecules with (a) ortho-di-tert-butyl groups and (b) ortho-diisopropyl groups in the aniline rings. The distance ranges between the N atom and the nearest methyl C atoms of ${ }^{i} \mathrm{Pr} /{ }^{t} \mathrm{Bu}$ were included (Fukuda et al., 2003). (c) Steric hindrance between the methyl group at the ortho position and the phenol group of the neighbouring molecule. There is an unusually short contact between the OH and the CH_{3} groups in a nonphotochromic crystal with ortho-dimethyl groups in the aniline rings, the $\mathrm{C} \cdots \mathrm{O}$ distance being 3.204 (3) Å (Fukuda et al., 2003).
and 4.137 (5) \AA for $\mathrm{N} 2 \cdots \mathrm{C} 37$. For SA derivatives substituted at both ortho positions of the aniline ring with methyl groups, there are both photochromic and non-photochromic crystals. For the photochromic crystals, pedal motion can easily occur as observed in the crystals with diisopropyl and diethyl groups. For the non-photochromic crystals, on the other hand, pedal motion appears to be restricted by the close contact of neighbouring molecules, as shown in Fig. 9(c). The slide motion of the benzene ring is hindered by the short intermolecular contact distance between the OH and CH_{3} groups, where $\mathrm{O} \cdots \mathrm{C}$ is $3.204(3) \AA$. Such a short contact is not observed in the crystal structures of (1)-(5) (the shortest intermolecular $\mathrm{C} \cdots \mathrm{C}, \mathrm{C} \cdots \mathrm{O}, \mathrm{C} \cdots \mathrm{N}$ distances being greater than $3.5 \AA$).

These observations clearly indicate that the non-planarity of the SA derivatives is necessary to initiate pedal motion; localizing the π-electrons into the two terminal benzene rings and the central $\mathrm{CH}=\mathrm{NH}$ group. The threshold value for nonplanarity resulting in photochromic behaviour is a dihedral angle of at least 30° between the two terminal benzene rings. However, the impact of intra- and intermolecular steric hindrance upon pedal motion inhibition represents an important factor in determining photochromism.

This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for Promotion of Science.

References

Ahmad, J. U., Nieger, M., Sundberg, M. R., Leskela, M. \& Repo, T. (2011). J. Mol. Struct. 995, 9-19.

Andes, R. V. \& Manikowski, D. M. (1968). Appl. Opt. 7, 1179-1183.
Armistead, W. H. \& Stookey, S. D. (1964). Science, 144, 150-154.
Bregman, J., Leiserowitz, L. \& Schmidt, G. M. (1964). J. Chem. Soc. pp. 2068-2085.
Cohen, M. D., Hirshberg, Y. \& Schmidt, G. M. (1964). J. Chem. Soc. pp. 2051-2059.
Cohen, M. D. \& Schmidt, G. M. (1962). J. Chem. Phys. 66, 2442-2447.
Cohen, M. D., Schmidt, G. M. \& Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.
Crano, J. C. \& Guglielmetti, R. J. (1999). Organic Photochromic and Thermochromic Compounds. New York, London: Plenum Press.

Duerr, H. \& Bouas-Laurent, H. (1990). Photochromism Molecules and Systems. Amsterdam: Elsevier.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fujiwara, T., Harada, J. \& Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.
Fukaminato, T., Sasaki, T., Kawai, T., Tamai, N. \& Irie, M. (2004). J. Am. Chem. Soc. 126, 14843-14849.
Fukuda, H., Amimoto, K., Koyama, H. \& Kawato, T. (2003). Org. Biomol. Chem. 1, 1578-1583.
Haneda, T., Kawano, M., Kojima, T. \& Fujita, M. (2007). Angew. Chem. Int. Ed. 46, 6643-6645.
Harada, J., Fujiwara, T. \& Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.
Harada, J. \& Ogawa, K. (2009). Chem. Soc. Rev. 38, 2244-2252.
Harada, J., Ogawa, K. \& Tomoda, S. (1997). Acta Cryst. B53, 662-672.
Harada, J., Uekusa, H. \& Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johmoto, K., Sekine, A., Uekusa, H. \& Ohashi, Y. (2009). Bull. Chem. Soc. Jpn, 82, 50-57.
Kawata, S. \& Kawata, Y. (2000). Chem. Rev. 100, 1777-1788.
Mikami, M. \& Nakamura, S. (2004). Phys. Rev. B, 69, 134205.
Mizuno, H., Mal, T. K., Wälchli, M., Kikuchi, A., Fukano, T., Ando, R., Jeyakanthan, J., Taka, J. Shiro, Y., Ikura, M. \& Miyawaki, A. (2008). Proc. Natl Acad. Sci. USA, 105, 9927-9932.

Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.
Moustakali-Mavridis, I., Hadjoudis, B. \& Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.
Ogawa, K., Kasahara, Y., Ohtani, Y. \& Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Senir, A. \& Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 19431955.

Senir, A., Shepheard, F. G. \& Clarke, R. (1912). J. Chem. Soc. Trans. 101, 1950-1958.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1994a). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sousa, J. A. \& Kashnow, R. A. (1969). Rev. Sci. Instrum. 40, 966-967.

